

Pyruvate Oxidase Activity Colorimetric Microplate Assay Kit User Manual

Catalog # CAK1316

(Version 1.1A)

Detection and Quantification of Pyruvate Oxidase(POX)Activity in Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media and Other biological fluidsSamples.

For research use only. Not for diagnostic or therapeutic procedures.

I. INTRODUCTION	2
II. KIT COMPONENTS	
III. MATERIALS REQUIRED BUT NOT PROVIDED	
IV. SAMPLE PREPARATION	
V. ASSAY PROCEDURE	
VI. CALCULATION	
VII. TYPICAL DATA	
VIII. TECHNICAL SUPPORT	
IX. NOTES.	7

I. INTRODUCTION

Pyruvate Oxidase(POX) is a thiamine pyrophosphate-dependent oxidase that catalyzes the oxidative decarboxylation of pyruvate to acetyl phosphate, carbon dioxide and water. Pyruvate oxidase is an important enzyme in bacterial metabolism and is often used in biochemical research.

Pyruvate Oxidase ActivityColorimetric Microplate Assay Kit provides a simple and direct procedure for measuring pyruvate oxidaseactivity in a variety of samples.

Pyruvate is oxidized by pyruvate oxidase. The enzyme catalysed reaction products quinone can be measured at a colorimetric readout at 550 nm.

II.KIT COMPONENTS

Component	Volume	Storage
96-Well Microplate	1 plate	
Assay Buffer	30mlx 4	4 °C
Reaction Buffer	10 ml x 1	4 °C
Substrate	Powder x 1	4 °C
Dye Reagent	Powder x 1	4 °C, keep in dark
Standard (5 mmol/L)	1 ml x 1	4 °C
Positive Control	Powder x 1	-20 °C
Plate Adhesive Strips	3 Strips	
Technical Manual	1 Manual	

Note:

Substrate: add 1 ml Reaction Bufferto dissolve before use, mix.Store at 4 °C. Use within one month.

Dye Reagent: add 10 ml Distilled waterto dissolve before use, mix.Store at -20 °C. Use within one month.

Positive Control: add 1 ml Assay Buffer to dissolve before use, mix.Aliquot & store at -20 °C.Use within one month.

III. MATERIALS REQUIRED BUT NOT PROVIDED

1.	Microp	late	reader	to	read	absor	bance	at !	550	nm
----	--------	------	--------	----	------	-------	-------	------	-----	----

- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Centrifuge
- 7. Timer
- 8. Ice

IV. SAMPLE PREPARATION

1.For cell and bacteria samples

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 mlAssay buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s,repeat 30 times); centrifuged at 10000g 4°C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2.For tissue samples

Weighout 0.1 g tissue, homogenize with 1 mlAssay buffer on ice, centrifuged at 10000g 4°C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

3.For liquid samples

Detect directly.

V. ASSAY PROCEDURE

Warm all reagents to room temperature before use.

Add following reagents into the microplate:

Reagent	Sample	Control	Standard	Blank	Positive
					Control
Reaction Buffer	80 μΙ	80 μΙ	90 μΙ	90 μΙ	80 μΙ
Substrate	10 μΙ	10 μΙ			10 μΙ
Sample	10 μΙ				
Standard			10 μΙ		
Distilled water		10 μΙ		10 μΙ	
Positive Control					10 μΙ
Dye Reagent	100 μΙ	100 μΙ	100 μΙ	100 μΙ	100 μΙ

Mix, put it in the oven,37 °C for 10 minutes, measured at 550 nm and recordthe absorbance.

Note:

- 1) Perform 2-fold serial dilutions of the top standards to make the standard curve.
- 2) For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range. If the enzyme activity is lower, please add more sample into the reaction system; or increase the reaction time; if the enzyme activity is higher, please dilute the sample, or decrease the reaction time.
- 3) Reagents must be added step by step, can not be mixed and added together.

VI. CALCULATION

Unit Definition: One unit of pyruvate oxidase activity is defined as the enzyme generates 1 μ mol of H2O2 per minute.

1. According to the protein concentration of sample

POX (U/mg) =
$$(C_{Standard} \times V_{Standard}) \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / (V_{Sample} \times C_{Protein}) / T$$

$$= 0.5 \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / C_{Protein}$$

2. According to the weight of sample

POX (U/g) =
$$(C_{Standard} \times V_{Standard}) \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / (W$$

$$\times V_{Sample} / V_{Assay}) / T$$

=
$$0.5 \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / W$$

3. According to the quantity of cell or bacteria

POX (U/10⁴) =
$$(C_{Standard} \times V_{Standard}) \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / (N \times V_{Sample} / V_{Assay}) / T$$

=
$$0.5 \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / N$$

4. According to the volume of sample

POX (U/mI) =
$$(C_{Standard} \times V_{Standard}) \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / V_{Sample} / T$$

= $0.5 \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank})$

C_{Protein}: the protein concentration, mg/ml;

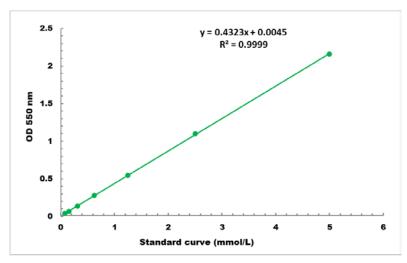
 $C_{Standard}$: the standard concentration, 5 mmol/L = 5µmol/ml;

W: the weight of sample, g;

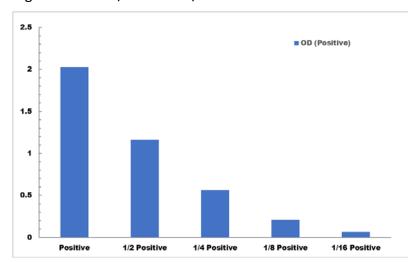
N: the quantity of cell or bacteria, $N \times 10^4$;

V_{Sample}: the volume of sample, 0.01 ml;

V_{Standard}: the volume of standard, 0.01 ml;


V_{Assay}: the volume of Assay buffer, 1 ml;

T: the reaction time, 10 minutes.



VII. TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.

Detection Range: 0.05 mmol/L - 5 mmol/L

Positive Control reaction in 96-well plate assay with decreasing the concentration

VIII. TECHNICAL SUPPORT

For troubleshooting, information or assistance, please go online towww.cohesionbio.com or contact us at techsupport@cohesionbio.com

IX. NOTES