

3-Phosphoglycerate Kinase Microplate Assay Kit User Manual

Catalog # CAK1287

(Version 1.1A)

Detection and Quantification of 3-Phosphoglycerate Kinase (PGK) Activity in Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media, Other biological fluids Samples.

For research use only. Not for diagnostic or therapeutic procedures.

I. INTRODUCTION	2
II. KIT COMPONENTS	3
III. MATERIALS REQUIRED BUT NOT PROVIDED	4
IV. SAMPLE PREPARATION	4
V. ASSAY PROCEDURE	5
VI. CALCULATION	6
VII. TYPICAL DATA	7
VIII. TECHNICAL SUPPORT	7
IX NOTES	7

I. INTRODUCTION

3-Phosphoglycerate kinase (EC 2.7.2.3) (PGK) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP. Like all kinases it is a transferase. PGK is a major enzyme used in glycolysis, in the first ATP-generating step of the glycolytic pathway. In gluconeogenesis, the reaction catalyzed by PGK proceeds in the opposite direction, generating ADP and 1,3-BPG.

3-Phosphoglycerate Kinase Microplate Assay Kit provides a simple and sensitive method for monitoring 3-Phosphoglycerate Kinase activity in various samples. In this assay, 3-Phosphoglycerate Kinase catalyzes conversion of 3-phosphoglycerate to 1,3-diphosphoglycerate and an intermediate, which reacts with a developer to form a colored product that absorbs maximally at 492 nm.

II. KIT COMPONENTS

Component	Volume	Storage	
96-Well Microplate	1 plate		
Assay Buffer	30 ml x 4	4 °C	
Reaction Buffer	10 ml x 1	4 °C	
Substrate	Powder x 1	-20 °C	
Enzyme	Powder x 1	-20 °C	
Dye Reagent A	Powder x 1	4 °C	
Dye Reagent B	1 ml x 1	4 °C	
Standard	Powder x 1	-20 °C	
Positive Control	100 μl x 1	4 °C	
Plate Adhesive Strips	3 Strips		
Technical Manual	1 Manual		

Note:

Substrate: add 1 ml Reaction Buffer to dissolve before use, store at 4 °C for 1-2 weeks after reconstitution.

Enzyme: add 1 ml Reaction Buffer to dissolve before use, store at -80 °C for 1 month after reconstitution.

Dye Reagent A: add 9 ml distilled water to dissolve before use, mix, store at 4°C for 1 month after reconstitution.

Standard: add 1 ml distilled water to dissolve before use; then add 0.15 ml into 0.85 ml distilled water, the concentration will be 300 μ mol/L, store at 4°C for 1-2 weeks after reconstitution.

III. MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader to read absorbance at 492 nm
- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Centrifuge
- 7. Timer

IV. SAMPLE PREPARATION

1. For cell and bacteria samples

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay Buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s, repeat 30 times); centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2. For tissue samples

Weigh out 0.1 g tissue, homogenize with 1 ml Assay Buffer on ice, centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

3. For serum or plasma samples

Detect directly.

V. ASSAY PROCEDURE

Warm the all reagents to room temperature before use.

Add following reagents into the microplate:

Reagent	Sample	Control	Standard	Blank	Positive
					Control
Reaction Buffer	70 μΙ	70 μΙ			70 μΙ
Coenzyme	10 μΙ	10 μΙ			10 μΙ
Substrate	10 μΙ	10 μΙ			10 μΙ
Sample	10 μΙ				
Positive Control					10 μΙ
Standard			100 μΙ		
Distilled water		10 μΙ		100 μΙ	
Dye Reagent A	90 μΙ	90 μΙ	90 μΙ	90 μΙ	90 μΙ
Dye Reagent B	10 μΙ	10 μΙ	10 μΙ	10 μΙ	10 μΙ

Mix, cover the plate adhesive strip, put the plate into the convection oven, incubate at 37 °C for 5 minutes, measured at 492 nm and record the absorbance.

Note:

- 1) Perform 2-fold serial dilutions of the top standards to make the standard curve.
- 2) For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range. If the enzyme activity is lower, please add more sample into the reaction system; or increase the reaction time; if the enzyme activity is higher, please dilute the sample, or decrease the reaction time.
- 3) Reagents must be added step by step, can not be mixed and added together.

VI. CALCULATION

Unit Definition: one unit of PGK activity is defined as the enzyme oxidize 1 μ mol NADH per minute.

1. According to the protein concentration of sample

PGK (U/mg) =
$$(C_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / (V_{Sample}) \times C_{Protein}) / T$$

$$= 0.6 \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / C_{Protein}$$

2. According to the weight of sample

PGK (U/g) =
$$(C_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / (V_{Sample} \times W / V_{Assay}) / T$$

$$= 0.6 \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / W$$

3. According to the quantity of cells or bacteria

PGK (U/10⁴) = (C_{Standard} × V_{Standard}) × (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) (V_{Sample}
× N / V_{Assay}) / T
=
$$0.6 \times (OD_{Control} - OD_{Sample})$$
 / (OD_{Standard} - OD_{Blank}) / N

4. According to the volume of sample

PGK (U/mI) =
$$(C_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / V_{Sample} / T$$

$$= 0.6 \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank})$$

$$C_{Standard}$$
: the standard concentration, 600 μ mol/L = 0.6 μ mol/ml;

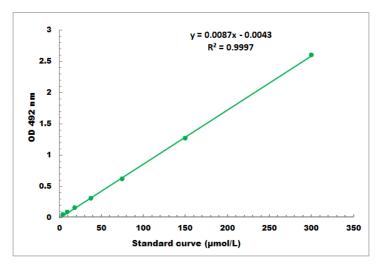
 $V_{Standard}$: the volume of standard, 100 μ l = 0.1 ml;

C_{Protein}: the protein concentration, mg/ml;

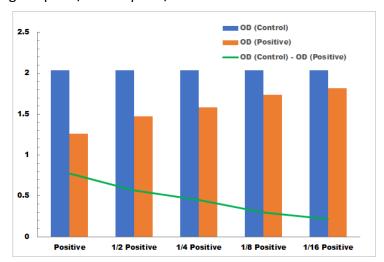
W: the weight of sample, g;

N: the quantity of cell or bacteria, $N \times 10^4$;

V_{Sample}: the volume of sample, 0.01 ml;


V_{Assay}: the volume of Assay buffer, 1 ml;

T: the reaction time, 5 minutes.



VII. TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.

Detection Range: 3 μmol/L - 300 μmol/L

Positive Control reaction in 96-well plate assay with decreasing the concentration

VIII. TECHNICAL SUPPORT

For troubleshooting, information or assistance, please go online to www.cohesionbio.com or contact us at techsupport@cohesionbio.com

IX. NOTES