

NAD-Malate Dehydrogenase

Microplate Assay Kit

User Manual

Catalog # CAK1142

(Version 1.3A)

Detection and Quantification of NAD-Malate Dehydrogenase Activity in Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media and Other biological fluids Samples.

For research use only. Not for diagnostic or therapeutic procedures.

I. INTRODUCTION	2
II. KIT COMPONENTS	3
III. MATERIALS REQUIRED BUT NOT PROVIDED	3
IV. SAMPLE PREPARATION	4
V. ASSAY PROCEDURE	5
VI. CALCULATION	6
VII. TYPICAL DATA	7
VIII. TECHNICAL SUPPORT	7
IX. NOTES	7

I. INTRODUCTION

Malate dehydrogenase (EC 1.1.1.37) (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD⁺ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. NAD-Malate Dehydrogenase Assay Kit is a sensitive assay for determining NAD-Malate Dehydrogenase activity in various samples. NAD-Malate Dehydrogenase activity is determined by NADH decomposition rate. The reaction products can be measured at a colorimetric readout at 340 nm.

II. KIT COMPONENTS

Component	Volume	Storage
96-Well Microplate	1 plate	
Assay Buffer	30 ml x 4	4 °C
Reaction Buffer	20 ml x 1	4 °C
Substrate	Powder x 1	-20 °C
Standard	Powder x 1	-20 °C
Technical Manual	1 Manual	

Note:

Substrate: add 19 ml Reaction Buffer to dissolve before use.

Standard: add 1 ml distilled water to dissolve before use; then add 0.2 ml into 0.8 ml

distilled water, the concentration will be 400 μ mol/L.

III. MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader to read absorbance at 340 nm
- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Centrifuge
- 7. Timer
- 8. Ice

IV. SAMPLE PREPARATION

1. For cell and bacteria samples

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s, repeat 30 times); centrifuged at 10,000g 4 °C for 15 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2. For tissue samples

Weigh out 0.1 g tissue, homogenize with 1 ml Assay buffer on ice, centrifuged at 10,000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

3. For liquid samples Detect directly.

V. ASSAY PROCEDURE

Warm all reagents to room temperature before use.

Add following reagents into the microplate:

Reagent	Sample	Standard	Blank	
Standard		200 μl		
Distilled water			200 μl	
Substrate	190 μl			
Sample	10 µl			
Mix, measured at 340 nm and record the absorbance of 10th second and 130th				
second.				

Note:

1) Perform 2-fold serial dilutions of the top standards to make the standard curve.

2) For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range. If the enzyme activity is lower, please add more sample into the reaction system; or increase the reaction time; if the enzyme activity is higher, please dilute the sample, or decrease the reaction time.

3) Reagents must be added step by step, can not be mixed and added together.

VI. CALCULATION

Unit Definition: One unit of NAD-Malate Dehydrogenase activity is defined as the enzyme reduces 1 μ mol of NADH per minute.

1. According to the protein concentration of sample

NAD-MDH (U/mg) = (C_{Standard} × V_{Standard}) × (OD_{Sample(10S)} - OD_{Sample(130S)}) / (OD_{Standard} - OD_{Blank}) / (V_{Sample} × C_{Protein}) / T

= $4 \times (OD_{Sample(10S)} - OD_{Sample(13OS)}) / (OD_{Standard} - OD_{Blank}) / C_{Protein}$

2. According to the weight of sample

NAD-MDH (U/g) = ($C_{\text{Standard}} \times V_{\text{Standard}}$) × ($OD_{\text{Sample(10S)}}$ - $OD_{\text{Sample(13OS)}}$) / (OD_{Standard} -

OD_{Blank}) / (V_{Sample} × W / V_{Assay}) / T

= $4 \times (OD_{Sample(10S)} - OD_{Sample(130S)}) / (OD_{Standard} - OD_{Blank}) / W$

3. According to the quantity of cells or bacteria

NAD-MDH (U/10⁴) = (C_{Standard} × V_{Standard}) × (OD_{Sample(10S)} - OD_{Sample(130S)}) / (OD_{Standard} - OD_{Blank}) / (V_{Sample} × N / V_{Assav}) / T

= $4 \times (OD_{Sample(10S)} - OD_{Sample(130S)}) / (OD_{Standard} - OD_{Blank}) / N$

4. According to the volume of sample

NAD-MDH (U/ml) = (C_{Standard} × V_{Standard}) × (OD_{Sample(10S)} - OD_{Sample(13OS)}) / (OD_{Standard} -

OD_{Blank}) / V_{Sample} / T

 $= 4 \times (OD_{Sample(10S)} - OD_{Sample(130S)}) / (OD_{Standard} - OD_{Blank})$

 C_{Standard} : the standard concentration, 400 µmol/L = 0.4 µmol/ml;

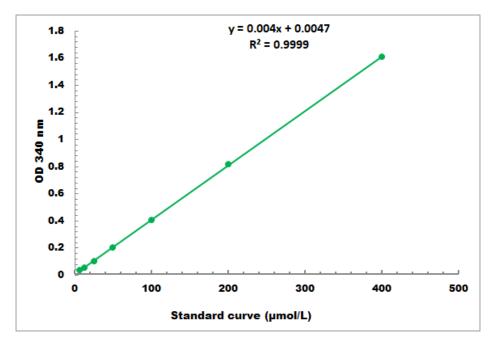
 V_{Standard} : the volume of standard, 200 µl = 0.2 ml;

C_{Protein}: the protein concentration, mg/ml;

W: the weight of sample, g;

N: the quantity of cell or bacteria, $N \times 10^4$;

V_{Sample}: the volume of sample, 0.01 ml;


V_{Assay}: the volume of Assay buffer, 1 ml;

T: the reaction time, 2 minutes.

VII. TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.

Detection Range: 4 µmol/L - 400 µmol/L

VIII. TECHNICAL SUPPORT

For troubleshooting, information or assistance, please go online to www.cohesionbio.com or contact us at techsupport@cohesionbio.com

IX. NOTES