Detection and Quantification of Pepsin Activity in Urine, Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media and Other biological fluids Samples.

For research use only. Not for diagnostic or therapeutic procedures.
I. INTRODUCTION

Pepsin is an enzyme whose zymogen (pepsinogen) is released by the chief cells in the stomach and that degrades food proteins into peptides. Pepsin is a digestive protease, a member of the aspartate protease family.

Pepsin is one of three principal protein-degrading, or proteolytic, enzymes in the digestive system, the other two being chymotrypsin and trypsin. The three enzymes were among the first to be isolated in crystalline form. During the process of digestion, these enzymes, each of which is specialized in severing links between particular types of amino acids, collaborate to break down dietary proteins into their components, i.e., peptides and amino acids, which can be readily absorbed by the intestinal lining. Pepsin is most efficient in cleaving peptide bonds between hydrophobic and preferably aromatic amino acids such as phenylalanine, tryptophan, and tyrosine.

The assay is initiated with the enzymatic catalysis of the hemoglobin by Pepsin. The enzyme catalysed reaction products can be measured at a colorimetric readout at 580 nm.
II. KIT COMPONENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-Well Microplate</td>
<td>1 plate</td>
<td></td>
</tr>
<tr>
<td>Assay Buffer</td>
<td>30 ml x 4</td>
<td>4 °C</td>
</tr>
<tr>
<td>Substrate</td>
<td>Powder x 1</td>
<td>4 °C, keep in dark</td>
</tr>
<tr>
<td>Substrate Diluent</td>
<td>12 ml x 1</td>
<td>4 °C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>10 ml x 1</td>
<td>4 °C</td>
</tr>
<tr>
<td>Reaction Buffer</td>
<td>12 ml x 1</td>
<td>4 °C</td>
</tr>
<tr>
<td>Dye Reagent</td>
<td>2 ml x 1</td>
<td>4 °C</td>
</tr>
<tr>
<td>Standard (1 μmol/ml)</td>
<td>1 ml x 1</td>
<td>4 °C</td>
</tr>
</tbody>
</table>

Note:
Substrate: add 10 ml Substrate Diluent to dissolve before use.

III. MATERIALS REQUIRED BUT NOT PROVIDED

1. Microplate reader to read absorbance at 580 nm
2. Distilled water
3. Pipettor
4. Pipette tips
5. Mortar
6. Centrifuge
7. Timer
8. Ice
IV. SAMPLE PREPARATION

1. For cell and bacteria samples
Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonication 3s, intervation 10s, repeat 30 times); centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2. For tissue samples
Weigh out 0.1 g tissue, homogenize with 1 ml Assay buffer, wait for 2 hours, centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

3. For serum or plasma samples
Detect directly.
V. ASSAY PROCEDURE

Warm Substrate to room temperature before use.

Add following reagents in the microcentrifuge tube:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Sample</th>
<th>Control</th>
<th>Standard</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>20 µl</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Substrate</td>
<td>100 µl</td>
<td>100 µl</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Mix, put it in water bath of 37 °C for 10 minutes.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Sample</th>
<th>Control</th>
<th>Standard</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop Solution</td>
<td>100 µl</td>
<td>100 µl</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sample</td>
<td>--</td>
<td>20 µl</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Mix, centrifuged at 10000g, 4 °C for 10 minutes, take the supernatant into the microplate.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Sample</th>
<th>Control</th>
<th>Standard</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supernatant</td>
<td>60 µl</td>
<td>60 µl</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Standard</td>
<td>--</td>
<td>--</td>
<td>60 µl</td>
<td>--</td>
</tr>
<tr>
<td>Substrate Diluent</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>60 µl</td>
</tr>
<tr>
<td>Reaction Buffer</td>
<td>120 µl</td>
<td>120 µl</td>
<td>120 µl</td>
<td>120 µl</td>
</tr>
<tr>
<td>Dye Reagent</td>
<td>20 µl</td>
<td>20 µl</td>
<td>20 µl</td>
<td>20 µl</td>
</tr>
</tbody>
</table>

Mix, wait for 20 minutes, record absorbance measured at 580 nm.
VI. CALCULATION

Unit Definition: One unit of Pepsin activity is the enzyme that generates 1 μmol of Tyrosine per minute.

1. According to the protein concentration of sample

 \[
 \text{Pepsin (U/mg)} = \frac{(C_{\text{Standard}} \times V_{\text{Standard}}) \times (O_{D_{\text{Sample}}} - O_{D_{\text{Control}}})}{(O_{D_{\text{Standard}}} - O_{D_{\text{Blank}}})} / (V_{\text{Sample}} \times C_{\text{Protein}}) / T \times 11
 \]

 \[
 = 1.1 \times \frac{(O_{D_{\text{Sample}}} - O_{D_{\text{Control}}})}{(O_{D_{\text{Standard}}} - O_{D_{\text{Blank}}})} / C_{\text{Protein}}
 \]

2. According to the weight of sample

 \[
 \text{Pepsin (U/g)} = \frac{(C_{\text{Standard}} \times V_{\text{Standard}}) \times (O_{D_{\text{Sample}}} - O_{D_{\text{Control}}})}{(O_{D_{\text{Standard}}} - O_{D_{\text{Blank}}})} / (W \times V_{\text{Sample}} / V_{\text{Assay}}) / T \times 11
 \]

 \[
 = 1.1 \times \frac{(O_{D_{\text{Sample}}} - O_{D_{\text{Control}}})}{(O_{D_{\text{Standard}}} - O_{D_{\text{Blank}}})} / W
 \]

3. According to the quantity of cells or bacteria

 \[
 \text{Pepsin (U/10}^4) = \frac{(C_{\text{Standard}} \times V_{\text{Standard}}) \times (O_{D_{\text{Sample}}} - O_{D_{\text{Control}}})}{(O_{D_{\text{Standard}}} - O_{D_{\text{Blank}}})} / (N \times V_{\text{Sample}} / V_{\text{Assay}}) / T \times 11
 \]

 \[
 = 1.1 \times \frac{(O_{D_{\text{Sample}}} - O_{D_{\text{Control}}})}{(O_{D_{\text{Standard}}} - O_{D_{\text{Blank}}})} / N
 \]

4. According to the volume of serum or plasma

 \[
 \text{Pepsin (U/ml)} = \frac{(C_{\text{Standard}} \times V_{\text{Standard}}) \times (O_{D_{\text{Sample}}} - O_{D_{\text{Control}}})}{(O_{D_{\text{Standard}}} - O_{D_{\text{Blank}}})} / V_{\text{Sample}} / T \times 11
 \]

 \[
 = 1.1 \times \frac{(O_{D_{\text{Sample}}} - O_{D_{\text{Control}}})}{(O_{D_{\text{Standard}}} - O_{D_{\text{Blank}}})}
 \]

\text{C}_{\text{Protein}}: the protein concentration, mg/ml;

\text{W}: the weight of sample, g;

\text{C}_{\text{Standard}}: the concentration of Standard, 1 μmol/ml;

\text{V}_{\text{Standard}}: the volume of standard, 0.06 ml;

\text{V}_{\text{Sample}}: the volume of sample, 0.06 ml;

\text{V}_{\text{Assay}}: the volume of Assay buffer, 1 ml;

\text{N}: the quantity of cell or bacteria, \text{N} \times 10^4;

\text{T}: the reaction time, 10 minutes.
VII. TECHNICAL SUPPORT

For troubleshooting, information or assistance, please go online to
www.cohesionbio.com or contact us at techsupport@cohesionbio.com

VIII. NOTES